Serveur d'exploration COVID et hydrochloroquine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Pharmacokinetics under the COVID-19 storm.

Identifieur interne : 000E66 ( Main/Exploration ); précédent : 000E65; suivant : 000E67

Pharmacokinetics under the COVID-19 storm.

Auteurs : Venkatesh Pilla Reddy [Royaume-Uni] ; Eman El-Khateeb [Royaume-Uni, Égypte] ; Heeseung Jo [Royaume-Uni] ; Natalie Giovino [États-Unis] ; Emily Lythgoe [Royaume-Uni] ; Shringi Sharma [États-Unis] ; Weifeng Tang [États-Unis] ; Masoud Jamei [Royaume-Uni] ; Amin Rastomi-Hodjegan [Royaume-Uni]

Source :

RBID : pubmed:33226664

Abstract

AIMS

The storm-like nature of the health crises caused by COVID-19 has led to unconventional clinical trial practices such as the relaxation of exclusion criteria. The question remains: how can we conduct diverse trials without exposing subgroups of populations to potentially harmful drug exposure levels? The aim of this study was to build a knowledge base of the effect of intrinsic/extrinsic factors on the disposition of several repurposed COVID-19 drugs.

METHODS

Physiologically based pharmacokinetic (PBPK) models were used to study the change in the pharmacokinetics (PK) of drugs repurposed for COVID-19 in geriatric patients, different race groups, organ impairment and drug-drug interactions (DDIs) risks. These models were also used to predict epithelial lining fluid (ELF) exposure, which is relevant for COVID-19 patients under elevated cytokine levels.

RESULTS

The simulated PK profiles suggest no dose adjustments are required based on age and race for COVID-19 drugs, but dose adjustments may be warranted for COVID-19 patients also exhibiting hepatic/renal impairment. PBPK model simulations suggest ELF exposure to attain a target concentration was adequate for most drugs, except for hydroxychloroquine, azithromycin, atazanavir and lopinavir/ritonavir.

CONCLUSION

We demonstrate that systematically collated data on absorption, distribution, metabolism and excretion, human PK parameters, DDIs and organ impairment can be used to verify simulated plasma and lung tissue exposure for drugs repurposed for COVID-19, justifying broader patient recruitment criteria. In addition, the PBPK model developed was used to study the effect of age and ethnicity on the PK of repurposed drugs, and to assess the correlation between lung exposure and relevant potency values from in vitro studies for SARS-CoV-2.


DOI: 10.1111/bcp.14668
PubMed: 33226664
PubMed Central: PMC7753415


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Pharmacokinetics under the COVID-19 storm.</title>
<author>
<name sortKey="Pilla Reddy, Venkatesh" sort="Pilla Reddy, Venkatesh" uniqKey="Pilla Reddy V" first="Venkatesh" last="Pilla Reddy">Venkatesh Pilla Reddy</name>
<affiliation wicri:level="1">
<nlm:affiliation>Modelling & Simulation, Early Oncology, R&D Oncology, AstraZeneca, Cambridge, UK.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>Modelling & Simulation, Early Oncology, R&D Oncology, AstraZeneca, Cambridge</wicri:regionArea>
<wicri:noRegion>Cambridge</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>Clinical Pharmacology and Quantitative Pharmacology, R&D, AstraZeneca, Cambridge, UK.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>Clinical Pharmacology and Quantitative Pharmacology, R&D, AstraZeneca, Cambridge</wicri:regionArea>
<wicri:noRegion>Cambridge</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="El Khateeb, Eman" sort="El Khateeb, Eman" uniqKey="El Khateeb E" first="Eman" last="El-Khateeb">Eman El-Khateeb</name>
<affiliation wicri:level="4">
<nlm:affiliation>Centre for Applied Pharmacokinetic Research, University of Manchester, Manchester, UK.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>Centre for Applied Pharmacokinetic Research, University of Manchester, Manchester</wicri:regionArea>
<placeName>
<settlement type="city">Manchester</settlement>
<region type="country">Angleterre</region>
<region type="région" nuts="1">Grand Manchester</region>
</placeName>
<orgName type="university">Université de Manchester</orgName>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>Clinical Pharmacy Department, Faculty of Pharmacy, Tanta University, Tanta, Egypt.</nlm:affiliation>
<country xml:lang="fr">Égypte</country>
<wicri:regionArea>Clinical Pharmacy Department, Faculty of Pharmacy, Tanta University, Tanta</wicri:regionArea>
<wicri:noRegion>Tanta</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Jo, Heeseung" sort="Jo, Heeseung" uniqKey="Jo H" first="Heeseung" last="Jo">Heeseung Jo</name>
<affiliation wicri:level="1">
<nlm:affiliation>Modelling & Simulation, Early Oncology, R&D Oncology, AstraZeneca, Cambridge, UK.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>Modelling & Simulation, Early Oncology, R&D Oncology, AstraZeneca, Cambridge</wicri:regionArea>
<wicri:noRegion>Cambridge</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Giovino, Natalie" sort="Giovino, Natalie" uniqKey="Giovino N" first="Natalie" last="Giovino">Natalie Giovino</name>
<affiliation wicri:level="3">
<nlm:affiliation>Early Oncology Clinical, R&D Oncology, AstraZeneca, Boston, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Early Oncology Clinical, R&D Oncology, AstraZeneca, Boston</wicri:regionArea>
<placeName>
<settlement type="city">Boston</settlement>
<region type="state">Massachusetts</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Lythgoe, Emily" sort="Lythgoe, Emily" uniqKey="Lythgoe E" first="Emily" last="Lythgoe">Emily Lythgoe</name>
<affiliation wicri:level="1">
<nlm:affiliation>R&D Biopharmaceuticals, AstraZeneca, Cambridge, UK.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>R&D Biopharmaceuticals, AstraZeneca, Cambridge</wicri:regionArea>
<wicri:noRegion>Cambridge</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Sharma, Shringi" sort="Sharma, Shringi" uniqKey="Sharma S" first="Shringi" last="Sharma">Shringi Sharma</name>
<affiliation wicri:level="1">
<nlm:affiliation>Clinical Pharmacology and Quantitative Pharmacology, R&D, AstraZeneca, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Clinical Pharmacology and Quantitative Pharmacology, R&D, AstraZeneca</wicri:regionArea>
<wicri:noRegion>AstraZeneca</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Tang, Weifeng" sort="Tang, Weifeng" uniqKey="Tang W" first="Weifeng" last="Tang">Weifeng Tang</name>
<affiliation wicri:level="1">
<nlm:affiliation>Clinical Pharmacology and Quantitative Pharmacology, R&D, AstraZeneca, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Clinical Pharmacology and Quantitative Pharmacology, R&D, AstraZeneca</wicri:regionArea>
<wicri:noRegion>AstraZeneca</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Jamei, Masoud" sort="Jamei, Masoud" uniqKey="Jamei M" first="Masoud" last="Jamei">Masoud Jamei</name>
<affiliation wicri:level="1">
<nlm:affiliation>Certara UK Limited, Simcyp Division, Sheffield, UK.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>Certara UK Limited, Simcyp Division, Sheffield</wicri:regionArea>
<wicri:noRegion>Sheffield</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Rastomi Hodjegan, Amin" sort="Rastomi Hodjegan, Amin" uniqKey="Rastomi Hodjegan A" first="Amin" last="Rastomi-Hodjegan">Amin Rastomi-Hodjegan</name>
<affiliation wicri:level="4">
<nlm:affiliation>Centre for Applied Pharmacokinetic Research, University of Manchester, Manchester, UK.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>Centre for Applied Pharmacokinetic Research, University of Manchester, Manchester</wicri:regionArea>
<placeName>
<settlement type="city">Manchester</settlement>
<region type="country">Angleterre</region>
<region type="région" nuts="1">Grand Manchester</region>
</placeName>
<orgName type="university">Université de Manchester</orgName>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>Certara UK Limited, Simcyp Division, Sheffield, UK.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>Certara UK Limited, Simcyp Division, Sheffield</wicri:regionArea>
<wicri:noRegion>Sheffield</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:33226664</idno>
<idno type="pmid">33226664</idno>
<idno type="doi">10.1111/bcp.14668</idno>
<idno type="pmc">PMC7753415</idno>
<idno type="wicri:Area/Main/Corpus">000789</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000789</idno>
<idno type="wicri:Area/Main/Curation">000789</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000789</idno>
<idno type="wicri:Area/Main/Exploration">000789</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Pharmacokinetics under the COVID-19 storm.</title>
<author>
<name sortKey="Pilla Reddy, Venkatesh" sort="Pilla Reddy, Venkatesh" uniqKey="Pilla Reddy V" first="Venkatesh" last="Pilla Reddy">Venkatesh Pilla Reddy</name>
<affiliation wicri:level="1">
<nlm:affiliation>Modelling & Simulation, Early Oncology, R&D Oncology, AstraZeneca, Cambridge, UK.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>Modelling & Simulation, Early Oncology, R&D Oncology, AstraZeneca, Cambridge</wicri:regionArea>
<wicri:noRegion>Cambridge</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>Clinical Pharmacology and Quantitative Pharmacology, R&D, AstraZeneca, Cambridge, UK.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>Clinical Pharmacology and Quantitative Pharmacology, R&D, AstraZeneca, Cambridge</wicri:regionArea>
<wicri:noRegion>Cambridge</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="El Khateeb, Eman" sort="El Khateeb, Eman" uniqKey="El Khateeb E" first="Eman" last="El-Khateeb">Eman El-Khateeb</name>
<affiliation wicri:level="4">
<nlm:affiliation>Centre for Applied Pharmacokinetic Research, University of Manchester, Manchester, UK.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>Centre for Applied Pharmacokinetic Research, University of Manchester, Manchester</wicri:regionArea>
<placeName>
<settlement type="city">Manchester</settlement>
<region type="country">Angleterre</region>
<region type="région" nuts="1">Grand Manchester</region>
</placeName>
<orgName type="university">Université de Manchester</orgName>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>Clinical Pharmacy Department, Faculty of Pharmacy, Tanta University, Tanta, Egypt.</nlm:affiliation>
<country xml:lang="fr">Égypte</country>
<wicri:regionArea>Clinical Pharmacy Department, Faculty of Pharmacy, Tanta University, Tanta</wicri:regionArea>
<wicri:noRegion>Tanta</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Jo, Heeseung" sort="Jo, Heeseung" uniqKey="Jo H" first="Heeseung" last="Jo">Heeseung Jo</name>
<affiliation wicri:level="1">
<nlm:affiliation>Modelling & Simulation, Early Oncology, R&D Oncology, AstraZeneca, Cambridge, UK.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>Modelling & Simulation, Early Oncology, R&D Oncology, AstraZeneca, Cambridge</wicri:regionArea>
<wicri:noRegion>Cambridge</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Giovino, Natalie" sort="Giovino, Natalie" uniqKey="Giovino N" first="Natalie" last="Giovino">Natalie Giovino</name>
<affiliation wicri:level="3">
<nlm:affiliation>Early Oncology Clinical, R&D Oncology, AstraZeneca, Boston, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Early Oncology Clinical, R&D Oncology, AstraZeneca, Boston</wicri:regionArea>
<placeName>
<settlement type="city">Boston</settlement>
<region type="state">Massachusetts</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Lythgoe, Emily" sort="Lythgoe, Emily" uniqKey="Lythgoe E" first="Emily" last="Lythgoe">Emily Lythgoe</name>
<affiliation wicri:level="1">
<nlm:affiliation>R&D Biopharmaceuticals, AstraZeneca, Cambridge, UK.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>R&D Biopharmaceuticals, AstraZeneca, Cambridge</wicri:regionArea>
<wicri:noRegion>Cambridge</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Sharma, Shringi" sort="Sharma, Shringi" uniqKey="Sharma S" first="Shringi" last="Sharma">Shringi Sharma</name>
<affiliation wicri:level="1">
<nlm:affiliation>Clinical Pharmacology and Quantitative Pharmacology, R&D, AstraZeneca, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Clinical Pharmacology and Quantitative Pharmacology, R&D, AstraZeneca</wicri:regionArea>
<wicri:noRegion>AstraZeneca</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Tang, Weifeng" sort="Tang, Weifeng" uniqKey="Tang W" first="Weifeng" last="Tang">Weifeng Tang</name>
<affiliation wicri:level="1">
<nlm:affiliation>Clinical Pharmacology and Quantitative Pharmacology, R&D, AstraZeneca, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Clinical Pharmacology and Quantitative Pharmacology, R&D, AstraZeneca</wicri:regionArea>
<wicri:noRegion>AstraZeneca</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Jamei, Masoud" sort="Jamei, Masoud" uniqKey="Jamei M" first="Masoud" last="Jamei">Masoud Jamei</name>
<affiliation wicri:level="1">
<nlm:affiliation>Certara UK Limited, Simcyp Division, Sheffield, UK.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>Certara UK Limited, Simcyp Division, Sheffield</wicri:regionArea>
<wicri:noRegion>Sheffield</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Rastomi Hodjegan, Amin" sort="Rastomi Hodjegan, Amin" uniqKey="Rastomi Hodjegan A" first="Amin" last="Rastomi-Hodjegan">Amin Rastomi-Hodjegan</name>
<affiliation wicri:level="4">
<nlm:affiliation>Centre for Applied Pharmacokinetic Research, University of Manchester, Manchester, UK.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>Centre for Applied Pharmacokinetic Research, University of Manchester, Manchester</wicri:regionArea>
<placeName>
<settlement type="city">Manchester</settlement>
<region type="country">Angleterre</region>
<region type="région" nuts="1">Grand Manchester</region>
</placeName>
<orgName type="university">Université de Manchester</orgName>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>Certara UK Limited, Simcyp Division, Sheffield, UK.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>Certara UK Limited, Simcyp Division, Sheffield</wicri:regionArea>
<wicri:noRegion>Sheffield</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">British journal of clinical pharmacology</title>
<idno type="eISSN">1365-2125</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>
<b>AIMS</b>
</p>
<p>The storm-like nature of the health crises caused by COVID-19 has led to unconventional clinical trial practices such as the relaxation of exclusion criteria. The question remains: how can we conduct diverse trials without exposing subgroups of populations to potentially harmful drug exposure levels? The aim of this study was to build a knowledge base of the effect of intrinsic/extrinsic factors on the disposition of several repurposed COVID-19 drugs.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>METHODS</b>
</p>
<p>Physiologically based pharmacokinetic (PBPK) models were used to study the change in the pharmacokinetics (PK) of drugs repurposed for COVID-19 in geriatric patients, different race groups, organ impairment and drug-drug interactions (DDIs) risks. These models were also used to predict epithelial lining fluid (ELF) exposure, which is relevant for COVID-19 patients under elevated cytokine levels.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>RESULTS</b>
</p>
<p>The simulated PK profiles suggest no dose adjustments are required based on age and race for COVID-19 drugs, but dose adjustments may be warranted for COVID-19 patients also exhibiting hepatic/renal impairment. PBPK model simulations suggest ELF exposure to attain a target concentration was adequate for most drugs, except for hydroxychloroquine, azithromycin, atazanavir and lopinavir/ritonavir.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>CONCLUSION</b>
</p>
<p>We demonstrate that systematically collated data on absorption, distribution, metabolism and excretion, human PK parameters, DDIs and organ impairment can be used to verify simulated plasma and lung tissue exposure for drugs repurposed for COVID-19, justifying broader patient recruitment criteria. In addition, the PBPK model developed was used to study the effect of age and ethnicity on the PK of repurposed drugs, and to assess the correlation between lung exposure and relevant potency values from in vitro studies for SARS-CoV-2.</p>
</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="Publisher" Owner="NLM">
<PMID Version="1">33226664</PMID>
<DateRevised>
<Year>2021</Year>
<Month>01</Month>
<Day>15</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1365-2125</ISSN>
<JournalIssue CitedMedium="Internet">
<PubDate>
<Year>2020</Year>
<Month>Nov</Month>
<Day>23</Day>
</PubDate>
</JournalIssue>
<Title>British journal of clinical pharmacology</Title>
<ISOAbbreviation>Br J Clin Pharmacol</ISOAbbreviation>
</Journal>
<ArticleTitle>Pharmacokinetics under the COVID-19 storm.</ArticleTitle>
<ELocationID EIdType="doi" ValidYN="Y">10.1111/bcp.14668</ELocationID>
<Abstract>
<AbstractText Label="AIMS" NlmCategory="OBJECTIVE">The storm-like nature of the health crises caused by COVID-19 has led to unconventional clinical trial practices such as the relaxation of exclusion criteria. The question remains: how can we conduct diverse trials without exposing subgroups of populations to potentially harmful drug exposure levels? The aim of this study was to build a knowledge base of the effect of intrinsic/extrinsic factors on the disposition of several repurposed COVID-19 drugs.</AbstractText>
<AbstractText Label="METHODS" NlmCategory="METHODS">Physiologically based pharmacokinetic (PBPK) models were used to study the change in the pharmacokinetics (PK) of drugs repurposed for COVID-19 in geriatric patients, different race groups, organ impairment and drug-drug interactions (DDIs) risks. These models were also used to predict epithelial lining fluid (ELF) exposure, which is relevant for COVID-19 patients under elevated cytokine levels.</AbstractText>
<AbstractText Label="RESULTS" NlmCategory="RESULTS">The simulated PK profiles suggest no dose adjustments are required based on age and race for COVID-19 drugs, but dose adjustments may be warranted for COVID-19 patients also exhibiting hepatic/renal impairment. PBPK model simulations suggest ELF exposure to attain a target concentration was adequate for most drugs, except for hydroxychloroquine, azithromycin, atazanavir and lopinavir/ritonavir.</AbstractText>
<AbstractText Label="CONCLUSION" NlmCategory="CONCLUSIONS">We demonstrate that systematically collated data on absorption, distribution, metabolism and excretion, human PK parameters, DDIs and organ impairment can be used to verify simulated plasma and lung tissue exposure for drugs repurposed for COVID-19, justifying broader patient recruitment criteria. In addition, the PBPK model developed was used to study the effect of age and ethnicity on the PK of repurposed drugs, and to assess the correlation between lung exposure and relevant potency values from in vitro studies for SARS-CoV-2.</AbstractText>
<CopyrightInformation>© 2020 British Pharmacological Society.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Pilla Reddy</LastName>
<ForeName>Venkatesh</ForeName>
<Initials>V</Initials>
<Identifier Source="ORCID">https://orcid.org/0000-0002-7786-4371</Identifier>
<AffiliationInfo>
<Affiliation>Modelling & Simulation, Early Oncology, R&D Oncology, AstraZeneca, Cambridge, UK.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Clinical Pharmacology and Quantitative Pharmacology, R&D, AstraZeneca, Cambridge, UK.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>El-Khateeb</LastName>
<ForeName>Eman</ForeName>
<Initials>E</Initials>
<Identifier Source="ORCID">https://orcid.org/0000-0002-8365-6528</Identifier>
<AffiliationInfo>
<Affiliation>Centre for Applied Pharmacokinetic Research, University of Manchester, Manchester, UK.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Clinical Pharmacy Department, Faculty of Pharmacy, Tanta University, Tanta, Egypt.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Jo</LastName>
<ForeName>Heeseung</ForeName>
<Initials>H</Initials>
<AffiliationInfo>
<Affiliation>Modelling & Simulation, Early Oncology, R&D Oncology, AstraZeneca, Cambridge, UK.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Giovino</LastName>
<ForeName>Natalie</ForeName>
<Initials>N</Initials>
<AffiliationInfo>
<Affiliation>Early Oncology Clinical, R&D Oncology, AstraZeneca, Boston, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Lythgoe</LastName>
<ForeName>Emily</ForeName>
<Initials>E</Initials>
<AffiliationInfo>
<Affiliation>R&D Biopharmaceuticals, AstraZeneca, Cambridge, UK.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Sharma</LastName>
<ForeName>Shringi</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>Clinical Pharmacology and Quantitative Pharmacology, R&D, AstraZeneca, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Tang</LastName>
<ForeName>Weifeng</ForeName>
<Initials>W</Initials>
<AffiliationInfo>
<Affiliation>Clinical Pharmacology and Quantitative Pharmacology, R&D, AstraZeneca, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Jamei</LastName>
<ForeName>Masoud</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Certara UK Limited, Simcyp Division, Sheffield, UK.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Rastomi-Hodjegan</LastName>
<ForeName>Amin</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>Centre for Applied Pharmacokinetic Research, University of Manchester, Manchester, UK.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Certara UK Limited, Simcyp Division, Sheffield, UK.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2020</Year>
<Month>11</Month>
<Day>23</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Br J Clin Pharmacol</MedlineTA>
<NlmUniqueID>7503323</NlmUniqueID>
<ISSNLinking>0306-5251</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">ADME</Keyword>
<Keyword MajorTopicYN="N">COVID-19</Keyword>
<Keyword MajorTopicYN="N">Drug-Drug Interactions</Keyword>
<Keyword MajorTopicYN="N">M&S</Keyword>
<Keyword MajorTopicYN="N">PBPK</Keyword>
<Keyword MajorTopicYN="N">PKPD</Keyword>
<Keyword MajorTopicYN="N">cytokine</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2020</Year>
<Month>06</Month>
<Day>26</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2020</Year>
<Month>10</Month>
<Day>26</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2020</Year>
<Month>11</Month>
<Day>06</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2020</Year>
<Month>11</Month>
<Day>24</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>11</Month>
<Day>24</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2020</Year>
<Month>11</Month>
<Day>23</Day>
<Hour>12</Hour>
<Minute>12</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>aheadofprint</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">33226664</ArticleId>
<ArticleId IdType="doi">10.1111/bcp.14668</ArticleId>
<ArticleId IdType="pmc">PMC7753415</ArticleId>
</ArticleIdList>
<ReferenceList>
<Title>REFERENCES</Title>
<Reference>
<Citation>FDA. Enhancing the diversity of clinical trial populations - eligibility criteria, enrollment practices, and trial designs guidance for industry. 2019, https://www.fda.gov/media/127712/download, accsessed 10 October 2020.</Citation>
</Reference>
<Reference>
<Citation>Beigel JH, Tomashek KM, Dodd LE, et al. Remdesivir for the treatment of Covid-19 - preliminary report. N Engl J Med. 2020;383:992-993.</Citation>
</Reference>
<Reference>
<Citation>Roschewski M, Lionakis MS, Sharman JP, et al. Inhibition of Bruton tyrosine kinase in patients with severe COVID-19. Sci Immunol. 2020;5(48):eabd0110.</Citation>
</Reference>
<Reference>
<Citation>Treon SP, Castillo JJ, Skarbnik AP, et al. The BTK inhibitor ibrutinib may protect against pulmonary injury in COVID-19-infected patients. Blood. 2020;135(21):1912-1915.</Citation>
</Reference>
<Reference>
<Citation>Administration FFD. FDA guidance on conduct of clinical trials of medical products during COVID-19 public health emergency. 2020, https://www.fda.gov/media/136238/download, accessed 10 October 2020.</Citation>
</Reference>
<Reference>
<Citation>Jarvis CI, Van Zandvoort K, Gimma A, et al. Quantifying the impact of physical distance measures on the transmission of COVID-19 in the UK. BMC Med. 2020;18:1-10.</Citation>
</Reference>
<Reference>
<Citation>Gautret P, Lagier JC, Parola P, et al. Hydroxychloroquine and azithromycin as a treatment of COVID-19: results of an open-label non-randomized clinical trial. Int J Antimicrob Agents. 2020;56(1):105949.</Citation>
</Reference>
<Reference>
<Citation>Aziz M, Fatima R, Assaly R. Elevated Interleukin-6 and severe COVID-19: a meta-analysis. J Med Virol. 2020;92(11):2283-2285.</Citation>
</Reference>
<Reference>
<Citation>Shimabukuro-Vornhagen A, Gödel P, Subklewe M, et al. Cytokine release syndrome. J Immunother Cancer. 2018;6:56.</Citation>
</Reference>
<Reference>
<Citation>Singhal T. A review of coronavirus Disease-2019 (COVID-19). Indian J Pediatr. 2020;87(4):281-286.</Citation>
</Reference>
<Reference>
<Citation>Ye Q, Wang B, Mao J. The pathogenesis and treatment of the ‘cytokine storm' in COVID-19. J Infect. 2020;80(6):607-613.</Citation>
</Reference>
<Reference>
<Citation>Morgan ET. Impact of infectious and inflammatory disease on cytochrome P450-mediated drug metabolism and pharmacokinetics. Clin Pharmacol Ther. 2009;85(4):434-438.</Citation>
</Reference>
<Reference>
<Citation>Williams SJ, Baird-Lambert JA, Farrell GC. Inhibition of theophylline metabolism by interferon. Lancet. 1987;2(8565):939-941.</Citation>
</Reference>
<Reference>
<Citation>Schmitt C, Kuhn B, Zhang X, Kivitz AJ, Grange S. Disease-drug-drug interaction involving tocilizumab and simvastatin in patients with rheumatoid arthritis. Clin Pharmacol Ther. 2011;89(5):735-740.</Citation>
</Reference>
<Reference>
<Citation>Lee EB, Daskalakis N, Xu C, et al. Disease-drug interaction of Sarilumab and simvastatin in patients with rheumatoid arthritis. Clin Pharmacokinet. 2017;56(6):607-615.</Citation>
</Reference>
<Reference>
<Citation>Keller R, Klein M, Thomas M, et al. Coordinating role of RXRalpha in downregulating hepatic detoxification during inflammation revealed by fuzzy-logic modeling. PLoS Comput Biol. 2016;12:e1004431.</Citation>
</Reference>
<Reference>
<Citation>Coutant DE, Kulanthaivel P, Turner PK, et al. Understanding disease-drug interactions in cancer patients: implications for dosing within the therapeutic window. Clin Pharmacol Ther. 2015;98(1):76-86.</Citation>
</Reference>
<Reference>
<Citation>Goralski KB, Ladda MA, McNeil JO. Drug-Cytokine Interactions. In: Pai M, Kiser J, Gubbins P, Rodvold K, eds. Drug Interactions in Infectious Diseases: Mechanisms and Models of Drug Interactions. Infectious Disease. Cham: Humana Press; 2018.</Citation>
</Reference>
<Reference>
<Citation>Chinnadurai R, Ogedengbe O, Agarwal P, et al. Older age and frailty are the chief predictors of mortality in COVID-19 patients admitted to an acute medical unit in a secondary care setting- a cohort study. BMC Geriatr. 2020;20(1):1-11.</Citation>
</Reference>
<Reference>
<Citation>Schwenger E, Reddy VP, Moorthy G, et al. Harnessing meta-analysis to refine an oncology patient population for physiology-based pharmacokinetic modeling of drugs. Clin Pharmacol Ther. 2018;103(2):271-280.</Citation>
</Reference>
<Reference>
<Citation>Pilla Reddy V, Bui K, Scarfe G, Zhou D, Learoyd M. Physiologically based pharmacokinetic modeling for Olaparib dosing recommendations: bridging formulations, drug interactions, and patient populations. Clin Pharmacol Ther. 2019;105(1):229-241.</Citation>
</Reference>
<Reference>
<Citation>Gaohua L, Wedagedera J, Small BG, et al. Development of a multicompartment permeability-limited lung PBPK model and its application in predicting pulmonary pharmacokinetics of antituberculosis drugs. CPT Pharmacometrics Syst Pharmacol. 2015;4(10):605-613.</Citation>
</Reference>
<Reference>
<Citation>(ASHP) ASoH-SP. Assessment of evidence for COVID-19-related treatments. https://www.ashp.org/-/media/assets/pharmacy-practice/resource-centers/Coronavirus/docs/ASHP-COVID-19-Evidence-Table; accessed 10 June 2020.</Citation>
</Reference>
<Reference>
<Citation>Dickmann LJ, Patel SK, Rock DA, Wienkers LC, Slatter JG. Effects of interleukin-6 (IL-6) and an anti-IL-6 monoclonal antibody on drug-metabolizing enzymes in human hepatocyte culture. Drug Metab Dispos. 2011;39(8):1415-1422.</Citation>
</Reference>
<Reference>
<Citation>Prystupa A, Kicinski P, Sak J, Boguszewska-Czubara A, Torun-Jurkowska A, Zaluska W. Proinflammatory cytokines (IL-1alpha, IL-6) and hepatocyte growth factor in patients with alcoholic liver cirrhosis. Gastroenterol Res Pract. 2015;2015:532615.</Citation>
</Reference>
<Reference>
<Citation>Chung S. The correlation between increased serum concentrations of Interleukin-6 family cytokines and disease activity in rheumatoid arthritis patients. Yonsei Med J. 2011;52(1):113-120.</Citation>
</Reference>
<Reference>
<Citation>Lippitz BE, Harris RA. Cytokine patterns in cancer patients: a review of the correlation between interleukin 6 and prognosis. Onco Targets Ther. 2016;5:e1093722.</Citation>
</Reference>
<Reference>
<Citation>Innovative & Quality (IQ). Industry perspectives on approaches to evaluate the effect of renal impairment on drug exposure. PBSS conference, 2019 San Francisco.</Citation>
</Reference>
<Reference>
<Citation>Rowland Yeo K, Zhang M, Pan X, et al. Impact of disease on plasma and lung exposure of chloroquine, hydroxy-chloroquine and azithromycin: application of PBPK modelling. Clin Pharmacol Ther. 2020;108(5):976-984. https://doi.org/10.1002/cpt.1955</Citation>
</Reference>
<Reference>
<Citation>Retallack H, Di Lullo E, Arias C, et al. Zika virus cell tropism in the developing human brain and inhibition by azithromycin. Proc Natl Acad Sci USA. 2016;113(50):14408-14413.</Citation>
</Reference>
<Reference>
<Citation>Gielen V, Johnston SL, Edwards MR. Azithromycin induces anti-viral responses in bronchial epithelial cells. Eur Respir J. 2010;36(3):646-654.</Citation>
</Reference>
<Reference>
<Citation>Bacharier LB, Guilbert TW, Mauger DT, et al. Early administration of azithromycin and prevention of severe lower respiratory tract illnesses in preschool children with a history of such illnesses: a randomized clinical trial. JAMA. 2015;314(19):2034-2044.</Citation>
</Reference>
<Reference>
<Citation>USA G. HIGHLIGHTS OF PRESCRIBING INFORMATION: XOFLUZATM (baloxavir marboxil) tablets, for oral use. In: FDA US Food & Drug Administration, October 2019.</Citation>
</Reference>
<Reference>
<Citation>Warhurst DC, Steele JCP, Adagu IS, Craig JC, Cullander C. Hydroxychloroquine is much less active than chloroquine against chloroquine-resistant Plasmodium falciparum, in agreement with its physicochemical properties. J Antimicrob Chemother. 2003;52(2):188-193. https://doi.org/10.1093/jac/dkg319</Citation>
</Reference>
<Reference>
<Citation>Yao X, Ye F, Zhang M, et al. In vitro antiviral activity and projection of optimized dosing Design of Hydroxychloroquine for the treatment of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Clin Infect Dis. 2020;71(15):732-739.</Citation>
</Reference>
<Reference>
<Citation>Liu J, Cao R, Xu M, et al. Hydroxychloroquine, a less toxic derivative of chloroquine, is effective in inhibiting SARS-CoV-2 infection in vitro. Cell Discov. 2020;6(1):1-4.</Citation>
</Reference>
<Reference>
<Citation>Han S, Hagan DL, Taylor JR, et al. Dapagliflozin, a selective SGLT2 inhibitor, improves glucose homeostasis in normal and diabetic rats. Diabetes. 2008;57(6):1723-1729.</Citation>
</Reference>
<Reference>
<Citation>Lv Z, Chu Y. Wang Y. HIV protease inhibitors: a review of molecular selectivity and toxicity. HIV AIDS (Auckl). 2015;7:95-104.</Citation>
</Reference>
<Reference>
<Citation>Fintelman-Rodrigues N, Sacramento CQ, Lima CR, et al. Atazanavir, alone or in combination with ritonavir, inhibits SARS-CoV-2 replication and proinflammatory cytokine production. Antimicrob Agents Chemother. 2020;64(10):e00825-20.</Citation>
</Reference>
<Reference>
<Citation>Richardson P, Griffin I, Tucker C, et al. Baricitinib as potential treatment for 2019-nCoV acute respiratory disease. Lancet (London, England). 2020;395:e30.</Citation>
</Reference>
<Reference>
<Citation>Roskoski R Jr. Janus kinase (JAK) inhibitors in the treatment of inflammatory and neoplastic diseases. Pharmacol Res. 2016;111:784-803.</Citation>
</Reference>
<Reference>
<Citation>Warren TK, Jordan R, Lo MK, et al. Therapeutic efficacy of the small molecule GS-5734 against Ebola virus in rhesus monkeys. Nature. 2016;531(7594):381-385.</Citation>
</Reference>
<Reference>
<Citation>McMullan LK, Flint M, Chakrabarti A, et al. Characterisation of infectious Ebola virus from the ongoing outbreak to guide response activities in the Democratic Republic of the Congo: a phylogenetic and in vitro analysis. Lancet Infect Dis. 2019;19(9):1023-1032.</Citation>
</Reference>
<Reference>
<Citation>Siegel D, Hui HC, Doerffler E, et al. Discovery and synthesis of a phosphoramidate prodrug of a pyrrolo[2,1-f][triazin-4-amino] adenine C-nucleoside (GS-5734) for the treatment of Ebola and emerging viruses. J Med Chem. 2017;60(5):1648-1661.</Citation>
</Reference>
<Reference>
<Citation>Yu R, Song D, DuBois DC, Almon RR, Jusko WJ. Modeling combined anti-inflammatory effects of dexamethasone and Tofacitinib in arthritic rats. AAPS J. 2019;21:93-101.</Citation>
</Reference>
<Reference>
<Citation>Loew D, Schuster O, Graul EH. Dose-dependent pharmacokinetics of dexamethasone. Eur J Clin Pharmacol. 1986;30(2):225-230.</Citation>
</Reference>
<Reference>
<Citation>Tocilizumab FDA label. .</Citation>
</Reference>
<Reference>
<Citation>Abdallah H, Hsu JC, Lu P, et al. Pharmacokinetic and pharmacodynamic analysis of subcutaneous Tocilizumab in patients with rheumatoid arthritis from 2 randomized, controlled trials: SUMMACTA and BREVACTA. J Clin Pharmacol. 2017;57(4):459-468.</Citation>
</Reference>
<Reference>
<Citation>Mihara M, Ohsugi Y, Kishimoto T. Tocilizumab, a humanized anti-interleukin-6 receptor antibody, for treatment of rheumatoid arthritis. Open Access Rheumatol. 2011;3:19-29.</Citation>
</Reference>
<Reference>
<Citation>Amgen. Product monograph: Kineret® (anakinra) [online] Available from URL: http://www.kineretrx.com [Accessed 2020 Aug 24].</Citation>
</Reference>
<Reference>
<Citation>Hensley LE, Fritz LE, Jahrling PB, Karp CL, Huggins JW, Geisbert TW. Interferon-beta 1a and SARS coronavirus replication. Emerg Infect Dis. 2004;10:317-319.</Citation>
</Reference>
<Reference>
<Citation>Anakinra BLA. https://www.accessdata.fda.gov/drugsatfda_docs/nda/2001/103950-0_Kineret_Biopharmr.PDF. 2001.</Citation>
</Reference>
<Reference>
<Citation>Siltuximab BLA. https://www.accessdata.fda.gov/drugsatfda_docs/nda/2014/125496Orig1s000MedR.pdf</Citation>
</Reference>
<Reference>
<Citation>Alexander SPH, Fabbro D, Kelly E, et al. The Concise Guide to PHARMACOLOGY 2019/20: Enzymes. Brit J Pharmacol. 2019;176:S297-S396. https://doi.org/10.1111/bph.14752</Citation>
</Reference>
<Reference>
<Citation>Roytblat L, Rachinsky M, Fisher A, et al. Raised interleukin-6 levels in obese patients. Obes Res. 2000;8(9):673-675.</Citation>
</Reference>
<Reference>
<Citation>Hidaka T, Suzuki K, Kawakami M, et al. Dynamic changes in cytokine levels in serum and synovial fluid following filtration leukocytapheresis therapy in patients with rheumatoid arthritis. J Clin Apher. 2001;16(2):74-81.</Citation>
</Reference>
<Reference>
<Citation>Arican O, Aral M, Sasmaz S, Ciragil P. Serum levels of TNF-alpha, IFN-gamma, IL-6, IL-8, IL-12, IL-17, and IL-18 in patients with active psoriasis and correlation with disease severity. Mediators Inflamm. 2005;2005(5):273-279.</Citation>
</Reference>
<Reference>
<Citation>Ataseven H, Bahcecioglu IH, Kuzu N, et al. The levels of ghrelin, leptin, TNF-alpha, and IL-6 in liver cirrhosis and hepatocellular carcinoma due to HBV and HDV infection. Mediators Inflamm. 2006;2006:78380.</Citation>
</Reference>
<Reference>
<Citation>Fan J, Zhang X, Liu J, et al. Connecting hydroxychloroquine in vitro antiviral activity to in vivo concentration for prediction of antiviral effect: a critical step in treating COVID-19 patients. Clin Infect Dis. 2020.</Citation>
</Reference>
<Reference>
<Citation>Acalabrutinib FDA NDA. Highlights of prescribing information for Calquence (acalabrutinib) capsules, for oral use. 2017.</Citation>
</Reference>
<Reference>
<Citation>Azithromycin FDANDA. Highlights of prescribing information for Zithromax (azithromycin) for IV infusion only. 2017.</Citation>
</Reference>
<Reference>
<Citation>Baricitinib FDA NDA. Highlights of prescribing information: Olumiant (baricitinib) tablets, for oral use. 2018.</Citation>
</Reference>
<Reference>
<Citation>Baloxavir FDA NDA. Highlights of prescribing information: Xofluza (baloxavir marboxil). 2018.</Citation>
</Reference>
<Reference>
<Citation>Chloroquine FDA NDA. ARALEN chloroquine phosphate, USP label. 2018.</Citation>
</Reference>
<Reference>
<Citation>Hydroxychloroquine FDA NDA. PLAQUENIL Hydroxychloroquine sulfate tablets, USP. 2019.</Citation>
</Reference>
<Reference>
<Citation>Darunavir, FDA NDA, Darunavir. https://www.accessdata.fda.gov/drugsatfda_docs/label/2017/021976s045_202895s020lbl.pdf. 2017.</Citation>
</Reference>
<Reference>
<Citation>Dapagliflozin FDA NDA, FDA. Highlights of prescribing information for FARXIGA (dapagliflozin). In, January 2020.</Citation>
</Reference>
<Reference>
<Citation>de Zwart L, Snoeys J, De Jong J, Sukbuntherng J, Mannaert E, Monshouwer M. Ibrutinib dosing strategies based on interaction potential of CYP3A4 perpetrators using physiologically based pharmacokinetic modeling. Clin Pharmacol Ther. 2016;100(5):548-557.</Citation>
</Reference>
<Reference>
<Citation>Ibrutinib FDA NDA. https://www.accessdata.fda.gov/drugsatfda_docs/label/2018/210563s000lbl.pdf. 2018.</Citation>
</Reference>
<Reference>
<Citation>Remdesivir FDA Label. Fact sheet for health care providers: emergency use authorization (EUA) of Remdesivir (GS-5734). In, 2020, May 1.</Citation>
</Reference>
<Reference>
<Citation>Ruxolitinib FDA Label. Highlights of prescribing information for JAKAFI (ruxolitinib) tablets, for oral use. 2011.</Citation>
</Reference>
<Reference>
<Citation>Ritonavir FDA label. Highlights of prescribing information for NORVIR (ritonavir) tablet, for oral use/ oral solution/oral powder. 2017.</Citation>
</Reference>
<Reference>
<Citation>Acalabrutinib FDA NDA. NDA/BLA multi-disciplinary review and evaluation {NDA 210259} {CALQUENCE, acalabrutinib}. In, edResearch CfDEa, FDA US Food & Drug Administration, 2016, February 1.</Citation>
</Reference>
<Reference>
<Citation>de Jong J, Skee D, Hellemans P, et al. Single-dose pharmacokinetics of ibrutinib in subjects with varying degrees of hepatic impairment. Leuk Lymphoma. 2017;58(1):185-194.</Citation>
</Reference>
<Reference>
<Citation>Mazzei T, Surrenti C, Novelli A, et al. Pharmacokinetics of azithromycin in patients with impaired hepatic function. J Antimicrob Chemother. 1993;31(Suppl E):57-63.</Citation>
</Reference>
<Reference>
<Citation>Gustafsson LL, Walker O, Alvan G, et al. Disposition of chloroquine in man after single intravenous and oral doses. Br J Clin Pharmacol. 1983;15(4):471-479.</Citation>
</Reference>
<Reference>
<Citation>Tett SE, Cutler DJ, Day RO, Brown KF. Bioavailability of hydroxychloroquine tablets in healthy volunteers. Br J Clin Pharmacol. 1989;27(6):771-779.</Citation>
</Reference>
<Reference>
<Citation>FDA Center for Drug Evaluation and Research. Summary of Resubmission and DPARB/OND Recommendations. Baricitinib, NDA 207924. https://www.accessdata.fda.gov/drugsatfda_docs/nda/2018/207924Orig1s000SumR.pdf Accessed Feb 7, 2020.</Citation>
</Reference>
<Reference>
<Citation>Peng JZ, Pulido F, Causemaker SJ, et al. Pharmacokinetics of lopinavir/ritonavir in HIV/hepatitis C virus-coinfected subjects with hepatic impairment. J Clin Pharmacol. 2006;46(3):265-274.</Citation>
</Reference>
<Reference>
<Citation>Bristol Myers Squibb Company. Reyataz (atazanavir sulfate) capsules: prescribing information. 2005. https://www.accessdata.fda.gov/drugsatfda_docs/label/2005/021567s005lbl.pdf</Citation>
</Reference>
<Reference>
<Citation>Sekar V, Spinosa-Guzman S, De Paepe E, et al. Pharmacokinetics of multiple-dose darunavir in combination with low-dose ritonavir in individuals with mild-to-moderate hepatic impairment. Clin Pharmacokinet. 2010;49(5):343-350.</Citation>
</Reference>
<Reference>
<Citation>Chen X, Shi JG, Emm T, et al. Pharmacokinetics and pharmacodynamics of orally administered ruxolitinib (INCB018424 phosphate) in renal and hepatic impairment patients. Clin Pharmacol Drug Dev. 2014;3(1):34-42.</Citation>
</Reference>
<Reference>
<Citation>US Food and Drug Administration. Highlights of prescribing information: Hemady (Dexamethasone). https://www.accessdata.fda.gov/drugsatfda_docs/label/2019/211379s000lbl.pdf</Citation>
</Reference>
<Reference>
<Citation>Hoffler D, Koeppe P, Paeske B. Pharmacokinetics of azithromycin in normal and impaired renal function. Infection. 1995;23(6):356-361.</Citation>
</Reference>
<Reference>
<Citation>Salako LA, Walker O, Iyun AO. Pharmacokinetics of chloroquine in renal insufficiency. Afr J Med Med Sci. 1984;13(3-4):177-182.</Citation>
</Reference>
<Reference>
<Citation>Kasichayanula S, Liu X, Pe Benito M, et al. The influence of kidney function on dapagliflozin exposure, metabolism and pharmacodynamics in healthy subjects and in patients with type 2 diabetes mellitus. Br J Clin Pharmacol. 2013;76(3):432-444.</Citation>
</Reference>
<Reference>
<Citation>US Food and Drug Administration. Highlights of prescribing information: Kaletra (Lopinavir and ritonavir). https://www.accessdata.fda.gov/drugsatfda_docs/label/2016/021251s052_021906s046lbl.pdf</Citation>
</Reference>
<Reference>
<Citation>Jeon S, Ko M, Lee J, et al. Identification of antiviral drug candidates against SARS-CoV-2 from FDA-approved drugs. Antimicrob Agents Chemother. 2020;64(7):e00819-00820.</Citation>
</Reference>
<Reference>
<Citation>Hoffmann M, Mosbauer K, Hofmann-Winkler H, et al. Chloroquine does not inhibit infection of human lung cells with SARS-CoV-2. Nature. 2020;585(7826):588-590.</Citation>
</Reference>
<Reference>
<Citation>Ufuk A, Assmus F, Francis L, et al. In vitro and in silico tools to assess extent of cellular uptake and lysosomal sequestration of respiratory drugs in human alveolar macrophages. Mol Pharm. 2017;14(4):1033-1046.</Citation>
</Reference>
<Reference>
<Citation>Pilla Reddy V, Walker M, Sharma P, Ballard P, Vishwanathan K. Development, verification, and prediction of Osimertinib drug-drug interactions using PBPK modeling approach to inform drug label. CPT Pharmacometrics Syst Pharmacol. 2018;7(5):321-330.</Citation>
</Reference>
<Reference>
<Citation>Shebley M, Sandhu P, Emami Riedmaier A, et al. Physiologically based pharmacokinetic model qualification and reporting procedures for regulatory submissions: a consortium perspective. Clin Pharmacol Ther. 2018;104(1):88-110.</Citation>
</Reference>
<Reference>
<Citation>Taskar KS, Pilla Reddy V, Burt H, et al. Physiologically-based pharmacokinetic models for evaluating membrane transporter mediated drug-drug interactions: current capabilities, case studies, future opportunities, and recommendations. Clin Pharmacol Ther. 2020;107(5):1082-1115.</Citation>
</Reference>
<Reference>
<Citation>Verscheijden LFM, van der Zanden TM, van Bussel LPM, et al. Chloroquine dosing recommendations for pediatric COVID-19 supported by modeling and simulation. Clin Pharmacol Ther. 2020;108(2):248-252.</Citation>
</Reference>
<Reference>
<Citation>Cao B, Wang Y, Wen D, et al. A trial of Lopinavir-ritonavir in adults hospitalized with severe Covid-19. N Engl J Med. 2020;382(19):1787-1799.</Citation>
</Reference>
<Reference>
<Citation>Azam YJ, Machavaram KK, Rostami-Hodjegan A. The modulating effects of endogenous substances on drug metabolising enzymes and implications for inter-individual variability and quantitative prediction. Curr Drug Metab. 2014;15(6):599-619.</Citation>
</Reference>
<Reference>
<Citation>Pilla Reddy V, Anjum R, Grondine M, et al. The pharmacokinetic-pharmacodynamic (PKPD) relationships of AZD3229, a novel and selective inhibitor of cKIT, in a range of mouse xenograft models of GIST. Clin Cancer Res. 2020;26(14):3751-3759.</Citation>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Royaume-Uni</li>
<li>Égypte</li>
<li>États-Unis</li>
</country>
<region>
<li>Angleterre</li>
<li>Grand Manchester</li>
<li>Massachusetts</li>
</region>
<settlement>
<li>Boston</li>
<li>Manchester</li>
</settlement>
<orgName>
<li>Université de Manchester</li>
</orgName>
</list>
<tree>
<country name="Royaume-Uni">
<noRegion>
<name sortKey="Pilla Reddy, Venkatesh" sort="Pilla Reddy, Venkatesh" uniqKey="Pilla Reddy V" first="Venkatesh" last="Pilla Reddy">Venkatesh Pilla Reddy</name>
</noRegion>
<name sortKey="El Khateeb, Eman" sort="El Khateeb, Eman" uniqKey="El Khateeb E" first="Eman" last="El-Khateeb">Eman El-Khateeb</name>
<name sortKey="Jamei, Masoud" sort="Jamei, Masoud" uniqKey="Jamei M" first="Masoud" last="Jamei">Masoud Jamei</name>
<name sortKey="Jo, Heeseung" sort="Jo, Heeseung" uniqKey="Jo H" first="Heeseung" last="Jo">Heeseung Jo</name>
<name sortKey="Lythgoe, Emily" sort="Lythgoe, Emily" uniqKey="Lythgoe E" first="Emily" last="Lythgoe">Emily Lythgoe</name>
<name sortKey="Pilla Reddy, Venkatesh" sort="Pilla Reddy, Venkatesh" uniqKey="Pilla Reddy V" first="Venkatesh" last="Pilla Reddy">Venkatesh Pilla Reddy</name>
<name sortKey="Rastomi Hodjegan, Amin" sort="Rastomi Hodjegan, Amin" uniqKey="Rastomi Hodjegan A" first="Amin" last="Rastomi-Hodjegan">Amin Rastomi-Hodjegan</name>
<name sortKey="Rastomi Hodjegan, Amin" sort="Rastomi Hodjegan, Amin" uniqKey="Rastomi Hodjegan A" first="Amin" last="Rastomi-Hodjegan">Amin Rastomi-Hodjegan</name>
</country>
<country name="Égypte">
<noRegion>
<name sortKey="El Khateeb, Eman" sort="El Khateeb, Eman" uniqKey="El Khateeb E" first="Eman" last="El-Khateeb">Eman El-Khateeb</name>
</noRegion>
</country>
<country name="États-Unis">
<region name="Massachusetts">
<name sortKey="Giovino, Natalie" sort="Giovino, Natalie" uniqKey="Giovino N" first="Natalie" last="Giovino">Natalie Giovino</name>
</region>
<name sortKey="Sharma, Shringi" sort="Sharma, Shringi" uniqKey="Sharma S" first="Shringi" last="Sharma">Shringi Sharma</name>
<name sortKey="Tang, Weifeng" sort="Tang, Weifeng" uniqKey="Tang W" first="Weifeng" last="Tang">Weifeng Tang</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/CovidChloroV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000E66 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000E66 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    CovidChloroV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:33226664
   |texte=   Pharmacokinetics under the COVID-19 storm.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:33226664" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a CovidChloroV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Sat May 22 17:02:32 2021. Site generation: Sat May 22 17:06:52 2021